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An Exact Dual Adjoint Solution Method
for Turbulent Flows on Unstructured Grids

Eric J. Nielsen*, James Lu t, Michael A. Park _, and David L. Darmofal §

An algorithm for solving the discrete adjoint system ba._ed on an unstructured-grid discretization of the
Navier-Stokes equations is presented. The method is constructed such that an adjoint solution exactly dual to a
direct differentiation approach is recovered at each time step, _ielding a convergence rate which is asymptotically
equivalent to that of the primal system. The new approach is implemented within a three-dimensional unstruc-
tured-grid framework and results are presented for inviscid, laminar, and turbulent flows. Improvements to the
baseline solution algorithm, such as line-implicit relaxation a_d a tight coupling of the turbulence model, are also

presented. By storing nearest-neighbor terms in the residual computation, the dual scheme is computationally

efficient, while requiring twice the memory of the flow soluti(,n. The scheme is expected to have a broad impact
on computational problems related to design optimization as well as error estimation and grid adaptation efforts.

Introduction

The field of computational fluid dynamics (CFD) is increasingly

important in the design and validation of new aerodynamic con-

cepts. The use of computational tools can greatly reduce the need

for more costly alternatives, such as wind tunnel experiments or

flight testing. CFD techniques based on the Navier-Stokes equa-
tions have matured into reliable tools for the analysis of complex

geometries. However, design optimization using these high-fidel-

ity methods has been greatly inhibited by their relatively high ex-

pense and lack of robustness.
In an effort to alleviate the high cost of gradient-based design

methodologies, recent work has focused on the use of adjoint
methods.l-2° Adjoint techniques generally fall into one of two cate-

gories based on the order in which the discretization and differenti-

ation processes are performed. The two approaches are termed

continuous or discrete adjoint methods. For a single output or con-

straint function, these schemes allow the computation of design

sensitivities at the cost of solving a single additional linear prob-

lem and a subsequent computation of a matrix-vector product di-
mensioned by the number of design variables.

In addition to its role in design optimization problems, the solu-

tion of the adjoint equation can be used to provide error estimates

for an output of engineering interest, as well as grid adaptation in-
"_1.'_9

formation that can be used to improve solution accuracy.- - Tra-
ditional methods for grid adaptation have typically relied on ad
hoc feature-based quantities. 3°33 In these approaches, features
such as shocks, boundary layers, and other regions of interest are

characterized by large gradients or curvatures in the solution. The
adaptation algorithm then attempts to improve the solution by add-
ing additional grid points in these regions. Unfortunately this ap-
proach can yield grids of unwieldy dimensions and even incorrect
results. 33 The local flow feature of interest is often over-resolved,

while smooth regions of the flowfield are essentially neglected.

The adjoint approach to grid adaptation seeks to minimize the
uncertainty or error in some specified output function. In this ap-
proach, a local adaptation parameter is obtained by combining
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flow and adjoint solutions, where the nonlinearities in these solu-

ti,)ns are weighted with the local residual error. This adaptation

technique implicitly targets the flow features having the highest

it_tpact on the output of interest. The test cases examined in Refs.

2,7, 25, and 27-29 clearly demonstrate the potential of using such

a_ approach to grid adaptation. Comparisons with feature-based

te=hniques are shown and results equivalent to those of uniform

g_id-refinement studies are obtained at a fraction of the cost. The

plocess terminates when a user-specified error tolerance is
at: hie ved.

Unfortunately the solution of the adjoint system of equations for

realistic problems has proven to be a formidable task. In Ref. 4, a

Krylov method was used to solve the adjoint system for turbulent

flows using relatively coarse grids over simple geometries. This

v¢ork successfully demonstrated the accuracy of the method. How-
ever, the computational time required to solve the equations was as

much as ten times the cost of the analysis problem, and the scheme

failed to converge for many problems. By employing a more ex-

tensive preconditioner for the Krylov algorithm, Ref. 5 demon-

strated improved performance. However, this preconditioning

strategy was shown to require approximately five times the mem-

ory of the baseline analysis scheme. This approach proved infeasi-

ble on available computers for large-scale problems that require

grids containing several million mesh points.
The focus of the current work is to develop a new solution algo-

rithm for the discrete adjoint system described in Refs. 4 and 5.
The work is largely based on the recent contributions of Giles, 18-2°

i_, which adjoint solutions for the Euler and Navier-Stokes equa-

tions are computed by using an explicit Runge-Kutta scheme com-
bined with multigrid using an exact dual method. Elliott 34 recently

u_ed a similar approach for two-dimensional turbulent flows on

o,'erset structured grids using multigrid and approximate factoriza-

tion.

Improvements to the implicit solution technique of Refs. 35 and
3t) are described, and an exact dual scheme is developed for the re-

stdting algorithm. Care has been taken to ensure that the imple-
mentation yields identical values for linear functionals at each time

step, thereby guaranteeing identical asymptotic convergence rates

f(>r the primal and dual systems. Results are shown for several
small test problems and two large-scale configurations. Conver-

gence of a typical cost function and its derivatives are examined,
and computational speed and memory requirements are discussed.

Flow Solution Method

The governing equations are the three-dimensional Reynolds-

a_'eraged Navier-Stokes equations. For turbulent flows, the one-
equation model of Spalart and Allmaras 38 is used. The flow solver
w:ed in the current work is described at length in Refs. 1, 35, and

3_. The code uses an implicit, upwind, finite-volume discretization
ir) which the dependent variables are stored at the mesh vertices.



Inviscid fluxes at cell interfaces are computed by using the upwind

schemes of Roe _u or Van Leer. 4° Viscous fluxes are formed by

using an approach equivalent to a central-difference Galerkin pro-

cedure. For steady-state flows, temporal discretization is performed

by using a backward Euler time-stepping scheme. A highly scalable

parallelization scheme is achieved through domain decomposition
and MPI communication.

An approximate solution of the linear system of equations

formed at each time step is obtained through several iterations of a

point-iterative scheme in which the nodes are updated in an even-

odd fashion, resulting in a Gauss-Seidel-type method. This scheme

is augmented with a line-relaxation algorithm in the current work.
In Refs. 1-5, 35, and 36, the turbulence model is integrated all

the way to the wall without the use of wall functions, and is solved

separately from the flow equations at each time step with an identi-

cal time-stepping scheme. The resulting linear system is solved

with the same iterative scheme employed for the flow equations.

The impact of coupling the flow equations and turbulence model

will be addressed further in a subsequent section.

In Refs. 1, 4, and 5, a discrete adjoint capability has been devel-

oped for the solver. In these references, the discretization of the

flow equations and turbulence model described above has been

fully differentiated by hand, and the adjoint system of equations has
been solved by using a preconditioned GMRES 37 algorithm. The
focus of the current work is an alternate solution method based on

an exact dual formulation.

Tightly Coupled Turbulence Model

The loosely coupled implementation of the turbulence model in
the baseline solver was originally chosen for its convenience in ac-

commodating additional models as they became available. Fur/her-
more, the loose formulation allows for straightforward implicit en-
forcement of positivity on the eddy viscosity by using M-type
matrices and positive operators as described in Ref. 38.

Although the loose formulation has proven satisfactory for engi-
neering-level analysis, it often results in stalled convergence or
limit-cycle oscillations that can be detrimental to subsequent ad-
joint computations. In the current work, a tightly coupled algorithm
is used to obtain more robust convergence behavior. The scheme
includes the linearizations of the governing flow equations with re-
spect to the turbulence model dependent variable a3, as well as the

linearizations of the turbulence model with respect to the conserved
variables Q, in the computation of the solution updates AQ and
Aa3. The approach taken in Ref. 38 to guarantee positivity on a3 be-

comes prohibitively difficult to impose for the tightly coupled sys-
tem, so that an update clip at _ = 0 is necessary to preclude non-
physical behavior as the solution rapidly develops from its initial

freestream conditions. This procedure occasionally admits tran-

sients in the early stages of a computation which may result in di-
vergence of the solution; these transients are overcome by using
small time steps as the initial solution sets up. Although not dis-
cussed in the present paper, limited success has been achieved

through modifications as suggested in Ref. 41, in which an analysis

of the linearized form of the turbulence source terms suggests a
similar addition to the diagonal elements of the system.

To demonstrate the effect of coupling on solution convergence,

transonic flow over an ONERA M6 wing 42 is computed by using
both the loosely and tightly coupled formulations. The grid is
shown in Fig. 1 and contains 359,536 nodes and 2,074,955 tetrahe-

dra. The freestream Mach number is 0.84, the angle of attack is
3.06 ° , and the Reynolds number is 5 million based on the mean
aerodynamic chord. For both cases, the CFL number for the flow

and turbulence equations has been linearly ramped from 10 to 200

over the fkst 50 iterations. The convergence histories for density

and turbulence for the two solution methods are shown in Fig. 2.

The loosely coupled scheme results in stalled convergence, whereas
the tightly coupled scheme steadily reduces the residuals by six or-
ders of magnitude over the course of the computation. Similar re-
sults have been observed in other cases, and the tightly coupled al-
gorithm is employed for the remainder of the current work.

Figure 1. Surface grid for viscous ONERA M6 wing.
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Figure 2. Effect of turbulence model coupling on ONERA M6 flow
solution.

Line-Implicit Relaxation Scheme

When used in conjunction with the baseline point-implicit

scheme used for the flow solution, a line-implicit scheme can result

in improved convergence rates for viscous flows. The benefits of

line-relaxation techniques on highly stretched grids are well-

known. 43 The central idea is that the coupling of the discrete equa-

tions is considerably higher in the direction normal to the grid

stretching, so that a relaxation scheme can be constructed to more

efficiently solve the equations associated with lines in these direc-
tions.

Line Construction Method

On structured grids the line-relaxation direction is typically well-

defined because a grid coordinate direction can be readily em-

ployed. For unstructured grids, this inherent direction is not avail-

able and must be constructed prior to performing any computations.

In Ref. 44, implicit lines have been constructed based on neighbor-

ing prismatic and hexahedral elements within the boundary layer.

In the current work, only tetrahedral elements are employed; thus,

an alternative line construction strategy must be used.

To construct a line for implicit relaxation through the boundary

layer, an initial point is chosen on a viscous boundary surface. A

surface normal is constructed at this point, and the direction of

edges connected to this node are compared with the normal using

an inner product. The edge with the maximum positive inner prod-

uct is selected to form the first line segment. The surface normal is



Figure 3. Result of implicit line construction algorithm applied to
wingtip geometry, of Ref. 45.

then replaced with the direction of the chosen edge, and the process
is repeated at the endpoint of successively selected edges, forming

the line along which to relax, The process is terminated when the

ratio of the length of the longest edge connected to the current node
to that of the selected edge falls below a predefined value; a value

of 5 is used in the current work. This criterion serves to identify the

"inviscid" region of the grid, where elements revert to an isotropic
distribution. Construction of a line is also terminated if an edge di-

rection differing by less than 20 degrees from the previous segment

cannot be found. This second stopping criterion ensures that line

segments remain normal to the original boundary surface. The re-

sult of applying this line construction algorithm to a simple wingtip
geometry 45 is shown in Fig. 3. A direction suitable for line-implicit

relaxation through the boundary layer has been formed at each

boundary node, such that approximately 30 grid points are con-
tained in each line.

Another important consideration is the mesh partitioning strategy

for parallel processing. To efficiently perform relaxation along any

given line, the line should wholly lie within a grid partition. To

avoid partition boundaries cutting across relaxation lines, edge

weighting is employed in the partitioning phase. 46 This procedure

minimizes the number of implicit lines that are split across partition
boundaries. In the event that an implicit line is cut by the mesh par-

titioning, the line is terminated at the partition boundary; no attempt

is made to perform line-relaxation across processors, Finally, a
multiconstraint version of the partitioning algorithm 47 is used to en-

sure that load balancing is achieved within the line-implicit and

point-implicit regions of the grid.

Line Relaxation Algorithm

Once the linear system of equations at the current time step has
been assembled, the unknowns associated with each implicit line

are computed exactly by using Gaussian elimination of a local

block-tridiagonal system of equations. This procedure is repeated

for a series of sweeps over the implicit lines; the initial decomposi-

tion of the coefficient matrix is stored so that subsequent sweeps

merely consist of a forward/backward substitution procedure. Once

a suitable level of convergence is obtained for the unknowns, the

remainder of the domain is relaxed by using several sweeps of the

baseline point-implicit scheme; adjacent unknowns determined by

the line-implicit scheme are taken as known quantities and moved

to the right-hand side of the equations.

To demonstrate the benefits of the line-implicit scheme, fully tur-

bulent flow over the wing-body configuration 45 shown in Fig. 4 is

computed on twenty-two 2.2 GHz Pentium IV processors using the

baseline point-implicit scheme as well as the line-implicit algo-

rithm. The freestream Mach number is 0.75, the angle of attack is

0 ° , and the Reynolds number is 3 million based on the mean aero-

dynamic chord. The grid contains 1,641,452 nodes and 9,650,684

\\ , ,,

_'igure 4. Surface grid for configuration of Ref. 45.
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Figure 5. Residual convergence histories for point- and line-implicit
solutions.

tetrahedra, and the line construction algorithm places 1,069,238

nodes in the line-implicit region. For this test, 15 sweeps through

the line- and point-implicit regions are used for both computations.

Convergence of the density and turbulence residuals for both so-

lution schemes is shown in Fig. 5. The line-implicit sa'ategy ulti-

mately results in a computational savings of approximately 20%

o_ er the baseline algorithm. As shown in Fig. 6, lift and drag more

rapidly approach their steady-state values with the line-implicit

scheme. This behavior is attributed to the rapid development of the

boundary layer region, and has been observed in a number of cases.

F,,r comparison, the results are plotted in Fig, 7 against experimen-

tai values from Ref. 45. Similar to many of the computations re-

p,_rted in Ref. 48, the lift is slightly overpredicted; however, the

c(_rrelation with the experimental drag polar is good.

Derivation of the Dual Algorithm

Consider the following form of the steady-state nonlinear gov-
erning equations, where D and Q represent the vector of design
variables and the corresponding dependent variables, respectively,

a_}d R, represents a second-order accurate discretization of the

sl:_atial residual.

R2(Q,D) = O. (1)

Note that in practice, there is also an implicit dependency on the
computational grid; the current approach includes these terms,
I_owever they are omitted here to simplify the underlying analysis.
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An iterative algorithm based on a backward Euler integration

scheme for the solution of the nonlinear system of equations given

by Eq. 1 can be written as

V -"+[_Q.)+o l_ "+i_-_I(Q --2_ , D) = 0, (2)

where V and At represent the local cell volume and time step, re-
spectively, and Q" is the vector of dependent variables at time step

n. The nonlinear iterative scheme is attained by linearizing the re-
sidual about time step n :

V I OR,_ ....
OU )_

where AQ" = Q" + ] - Q". Note the iteration superscript n is omit-
ted from the Jacobian matrix OR2/b Q for clarity; unless otherwise

noted, these derivatives will all be evaluated at time step n.

Note that because the Jacobian used in Eq. 3 is an exact lineariza-

tion of R., then for an infinite time step ,At _ the iterative scheme
correspon_ls to Newton's method, and Q will converge qua-

dratically to the steady-state value Q* corresponding to D. How-

ever, the use of an exact Jacobian OR2/O Q is often prohibitively
expensive for realistic problems, so that an approximate form of

Eq. 3 is typically used:

+ )AQ +R2(Q,D) = 0, (4)

where the exact Jacobian has been replaced with a linearization of
some first-order approximation to the spatial residual. The draw-
back to such an approach is that the asymptotic convergence of the
algorithm becomes linear in nature.

Equation 4 is a linear system of equations for AQ', which in
principle can be solved exactly. In practice, however, the system is

usually solved approximately by using an iterative method. There-
fore, Eq. 4 can be restated as

AQ" + PR2(Q" , D) = O, (5)

where P is an approximation to the inverse of V/Atl + ORi/O Q ,

typically achieved through some iterative scheme such as a Gauss-
Seidel iteration. In this manner, the asymptotic rate of convergence
is governed by the largest eigenvalue of the matrix 1 - POR2/O Q .

Direct Differentiation Algorithm
With minor modifications, the iterative algorithm outlined above

can be used to determine the sensitivity derivatives of an output
function f = f(Q*, D) with respect to a design variable. Applica-
tion of the chain rule yields the following:

df _ af OQ*. bf

d--D - _ "r b-D" (6)

Linearizing Eq. I with respect to D gives the linear residual equa-

tions for the sensitivity derivatives aQ*/aD :

aR2aQ" aR_
aO'aD +_-b" = 0. (7)

Applying the algorithm ofEq. 3 to this expression gives an iterative
scheme for bQ*/bD :

_t + -_Q)_,U6 ) + aQ'kao ) + _ = o. (8)

Finally, by replacing the exact Jacobian with the approximate Jaco-

bian as before and performing an approximate inverse gives the

final form of the direct differentiation iterative algorithm for the

sensitivity derivatives 3Q* / bD :

A_OQ*""

*  -B-j = 0. (9)

Note the asymptotic rate of convergence is again dictated by the

largest eigenvalue of I - P3Rz/a Q , and therefore will be equiva-

lent to that of the scheme used to attain Q*. After N iterations of

Eq. 9, the derivative of the output ]" with respect to the design vari-

ables D may be approximated as

as : os
d--_ aQ*taD ) + _-D' (I0)



Exact Dual Algorithm

In this section, an iterative solution of the dual problem is con-

structed in a manner which guarantees the functional estimate is

identical at every iteration to that obtained from the direct differen-

tation algorithm. Using an adjoint approach, the sensitivity deriva-

tive of the output can be written as

df r_R,
- A ___ff+O.fdD _D" (11)

where A is an adjoint variable that satisfies

[ _R_nT Vaf] T = o (12)@JA-L0e'j
Since Eq. 12 is independent of the vector D, the adjoint approach

is particularly attractive for aerodynamic design problems with a

large number of design variables and relatively few constraints. By
examining Eqs. 7 and 12, it can be seen that

°_f 3Q-* =-A r3R2 (13)
_Q*_D _D '

Therefore, the values of df/dD calculated from Eqs. 6 and 11 are
identical. However, since an iterative algorithm is used to estimate
3Q*/3D, this relationship will not hold in general. Following

Giles" exact dual approach, an iterative adjoint solution algorithm is
sought which satisfies

N
_Q'[,3D } = -(A ) _-D-, (14)

where N is some iteration at which the equality is to be enforced.

However, the resulting exact dual algorithm will not depend on N,

and the expression given by Eq. 14 will be valid at every iteration.

In this sense, the adjoint iterative algorithm will be exactly dual to

the direct differentiation algorithm.

Introducing Lagrange multipliers, the left-hand side of Eq. 14
after N iterations can be written as

_f (,_Q.yV _3f (_'y_
_-O-_tb-B: = b-Q-_t_-6) (15)

N-I I" _* n 1

r-, _,+,)r/.f ff _ _F_R2f_Q* _" _Rj]

- )÷
Then, by defining

N-'

A" = E pr_m+l, (16)

m=N-n

and performing the manipulations shown in the appendix, the exact

duality condition requires that

A'_+' - An + P T = 0 (17)

with an initial condition A ° = 0. As mentioned previously, Eq. 17

is independent of N and thus the exact duality condition holds for

all values of N. This condition guarantees an asymptotic rate of

convergence for the dual problem which is governed by the largest

eigenvalue of I-Pr[OR_/3Q*] r and is therefore ultimately

equivalent to that of the solution for Q*.

Relationship Between P and pT

In the current work, the approximate inverse P is the result of
applying multiple iterations of a fixed-point method, which can be

written in the following manner:

Mx j+' = b+Nx j (18)

or

x j÷L-x i = M I(b-Ax:), (19)

where A = M -N. Here, M is some matrix that is easily invert-
ible and approximates A.

Given some initial estimate x ° , after J iterations the scheme re-

suit:; in the following:

,l 0
x -x = [I-(M-IN):A-'](b-Ax°). (20)

Therefore, with respect to Eq. 9, the approximate inverse P using
J iterations of the fixed-point method is

P = I-(M-'N)JA -t . (21)

Forming the transpose of P yields

pr = I-A r[(M-IN)r] j. (22)

Be_ ase M-' N = I - M-I A , then

pr = I_A-r[(I_M-iA)r]:

or

pr = I-[M-rNr]JA -r . (23)

If the dual problem takes the form Ary = g as in Eq. 17, then

analogous to Eq. 20, Eq. 23 implies that the fixed-point iterative

scheme for the dual problem is

y:+'-yJ = M-r(g-Aryj). (24)

For a point-Jacobi scheme, the transpose operator applied to the

iteration matrix M is of no consequence, other than to imply that

the diagonal blocks are to be transposed. However, for a Gauss-
Seidel iterative method such as the one used in the current work,

the transpose operation transforms an upper-triangular iteration ma-
trix into a lower-triangular form, and vice versa. Therefore, the

transpose implies that even-odd sweeps through the system of

equations must be performed in a reverse manner. The same argu-

mtmt holds for the line-implicit operator used to relax the boundary

la3er region, although the solution within each line can be obtained
in the same manner as the baseline scheme because the inversion is

exact for the set of local equations within the line.

Implementation of the Dual Algorithm

The majority of the effort associated with developing an adjoint
soiver is in forming the exact linearizations of the second-order re-

sidual. For the codes used in the current study, this differentiation

has been previously performed and the accuracy has been estab-
fished in Refs. I, 3, and 5. The implementation of the exact dual al-

gorithm is primarily a high-level task that involves the manipula-
tion of existing routines; this process is made easier through the

programming practices established in Ref. 49.
After the flow solution has completed a series of n time steps

using the algorithm given by Eq. 5, the adjoint solve can be per-

formed in an analogous fashion according to Eq. 17. Note that the

dual iterative scheme is essentially identical to the baseline analysis

scheme so that little extra coding is required.

According to Eq. 17, the exact linearization of the second-order

spatial residual is required for the adjoint computation. However,

since these terms only appear in a matrix-vector product, they can

Ix' formed on a term-by-term basis and therefore do not require the

extensive storage typically associated with the higher-order stencil.

The transpose of the first-order Jacobian matrix

(V/At)I + OR,/OQ* is used to solve the system of adjoint equa-

tions, so that the storage required by the exact dual scheme is

roughly equivalent to that of the baseline analysis code. This re-

quirement is in contrast to the solution algorithm outlined in Ref. 5,

i_ which the complete linearization of the second-order residual

[gR2/OQ*] r was used as a preconditioner. The terms arising from

this larger stencil resulted in a memory requirement approximately
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Figure 8. Density residual histories for inviseid and laminar flow
over ONERA M6 wing.

five times that of the scheme outlined in Refs. 35 and 36. Finally,
since the Jacobian matrix aRI/OQ* is constant for an adjoint com-

putation, the block and tridiagonal-block decompositions used for

the point- and line-implicit iterations need only be performed once
and stored.

The solution strategy outlined in Refs. 1 and 4 required a fre-
quent computation of the form [OR2/aQ*]rAA for the Krylov

method being used. The viscous terms arising from the nearest-

neighbor discretization were stored, so that only the inviscid terms

involving the larger stencil were recomputed for each new Kryiov

vector. In the current work, an analogous approach can be used in
the formation of the adjoint residual component [OR_./i)Q*]TA n if

additional memory is available. Furthermore, if sufficient memory

is available for the higher-order terms as used for the precondi-

tioner in Ref. 5, the complete linearization may be stored. In this

manner, the residual update at time step n reduces to an explicit
matrix-vector product. Since all terms comprising the residual are

stored in this approach, the solution time for the adjoint problem

could be reduced considerably. Solution times and memory require-
ments for each of these strategies will be shown in a subsequent
section.

Validation Cases

A series of small test cases involving inviscid, laminar, and tur-

bulent flow over the ONERA M6 wing geometry is presented to

verify that the exact dual algorithm has been implemented cor-

rectly. Each of the viscous tests has been run using the line-implicit
relaxation scheme. For each example, the property of Eq. 14 has

been verified to machine accuracy, and the asymptotic convergence

rates for density (and turbulence where appropriate) are shown to

be equal to that of the corresponding adjoint equations. For visual

clarity, the convergence histories of the momentum and energy

equations and their adjoint counterparts are not shown in the figures

that follow, but have been found to closely follow that of the den-

sity equation. The cost function for each test case is based on lift,

and the CFL number for the flow solution has been linearly ramped

from 10 to 200 over the first 50 iterations. Unless otherwise stated,

each of the computations shown here has been performed on six-

teen 2.2 GHz Pentium IV processors.

lnvbcid Wing
The first test case is inviscid flow, with a freestream Mach num-

ber equal to 0.84 and an angle of attack of 3.06 ° . The grid for this

test contains 357,900 nodes and 2,000,034 tetrahedra. The conver-

gence histories of the density equation for the flow and adjoint so-

lutions are shown in Fig. 8; the convergence rates are equivalent.
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Figure 9. Density and turbulence residual histories for turbulent
flow over ONERA M6 wing.

10 -s,

10__

Ig 10 +1

104 _---+ dCt/d('rwist ) '_

-<}_ dCLId(Shear )

dCLId(Thicknesl)

dCJd(Camber)

10 '0 i J , I J i i i I , t i

1700 1800 1900

Iteration

Figure 1O. Convergence of lift and lift derivatives for turbulent flow
over ONERA M6 wing.

Laminar Wing
The first viscous case is for laminar flow with a freestream Mach

number of 0.3, an angle of attack of 2 ° , and a Reynolds number of
1000 based on the mean aerodynamic chord. The grid shown in

Fig. 1 is used for this example. The density convergence histories
for the flow and adjoint solutions are shown in Fig. 8, and the con-
vergence rates are identical,

Turbulent Wing
The final validation case is for turbulent flow over the ONERA

M6 wing on the same grid that was used in the previous example.

For this case, the freestream Mach number is 0.84, the angle of at-

tack is 3.06 ° , and the Reynolds number is 5 million based on the

mean aerodynamic chord. The convergence histories for the flow

and adjoint equations shown in Fig. 9 exhibit similar asymptotic
rates.

To further demonstrate the asymptotic nature of the flow and ad-

joint solution algorithms, the turbulent flow test case is also used to

examine the convergence of a cost function and its derivatives. For
this test, the wing has been parameterized by using the method of

Ref. 50. Fig. 10 shows the error in the lift coefficient as the flow so-

lution converges; it also shows the error in the derivatives of lift

with respect to freestream Mach number, angle of attack, and sev-

eral shape design variables at the midspan location as the adjoint

solution converges. For this case, the error is defined as the differ-



Table 1. Memory and CPU requirements for flow solver and
various linearization storage strategies used hw computing adjoint
residual.

Solver Memory, Wallclock Time
(GB) tHours)

Flow Solver 1.5 50,4

Adjoint Solver:

Explicit computation of all
residual terms

Explicit computation of inviscid
residual terms: viscous, turbulent

residual terms stored

All residual terms stored

1.6

3.1

10.8

42.0

25.9

17.1

ence between the current value and the final converged result. The

errors are reduced at a similar rate for each computation.
The turbulent flow test case is also used to evaluate the lineariza-

tion storage strategies described above. Tests are performed on six-

teen 250 MHz RI0000 processors of a Silicon Graphics Origin

2000 system to simplify memory monitoring and to eliminate the
effects of network traffic. The turbulent flow validation case has

been repeated using each of the storage strategies; memory and
wallclock statistics are shown in Table 1.

Recomputing all of the necessary linearizations for the adjoint

residual yields a memory requirement roughly equivalent to that of

the flow solution, while the wallclock time is approximately 17%

less. The discrepancy in solution times can be attributed to several

factors. Forming the flux Jacobians for the flow solution is roughly

equivalent in cost to a residual evaluation for the adjoint equations,

with a slight penalty for the computation of the second-order invis-

cid terms required by the latter. However, in the current implemen-

tation these second-order terms merely require an application of the

chain rule during computation of the first-order inviscid lineariza-
tions. Note that the flux Jacobians used for the left-hand side are

fixed during an adjoint solution, so that the initial cost of forming

these terms and performing the block-decompositions and block-

tridiagonal decompositions a priori is amortized over the duration

of the computation. In addition to the flux Jacobians required at

each time step of a flow solution, a residual evaluation is necessary,
which requires updated solution gradients and other solution-de-

pendent terms such as edge weights. Finally, the flow solution also

incurs a small amount of overhead at each time step in the computa-
tion of current forces and moments.

Alternatively, by storing the nearest-neighbor adjoint residual
contributions that arise from the linearization of the viscous and

turbulent terms, the wallclock time for an adjoint solution can be re-

duced to approximately half that of the flow solution while dou-

bling the memory requirement. Finally, by storing the complete lin-

earization of the second-order residual, the computational time is

reduced to roughly one-third of the baseline flow solution; how-

ever, the memory requirement for this approach is a factor of 6

higher than the baseline flow solution algorithm. Based on these re-
suits, the viscous and turbulent terms are stored throughout the re-

mainder of the current work, and the inviscid contributions are re-

computed as needed.

Large-Scale Test Cases

Two large-scale test cases are used to evaluate the solution algo-

rithm on realistic configurations. Each of the grids has been gener-
ated by using the method described in Ref. 51. In the interest of

comparing asymptotic convergence behavior, solutions have been

converged considerably beyond the usual requirements for engi-
neering-level answers; the stated run times do not represent time re-

quired to obtain a sufficiently accurate solution.

Figure 11. Surface grid for high-lift configuration.

High-Lift Configuration
l'urbulent flow over the high-lift configuration 52'53shown in Fig.

11 is computed using eighteen 1.7 GHz Pentium IV processors. The

gr_d contains 846,863 nodes and 4,879,086 cells, and the implicit

line construction algorithm places 418,523 nodes in the line-im-

plicit region. Although only a single plane is shown, symmetry

plane boundary conditions are used on both sides of the configura-
tk, n. The freestream Mach number is 0.2, the angle of attack is

12 _, and the Reynolds number is 9 million based on the stowed

chord length. The CFL numbers for the flow equations and turbu-
lence model are linearly ramped from 10 to 200 and 1 to 20, respec-

ti_ ely, over the first 200 iterations. For this case, the objective func-

tion is based on the lift coefficient. The flow solver requires

approximately 3.5 GB of memory and 36.2 hours of wallciock time

fer the current example; the adjoint solver requires roughly 7.1 GB

m_d 19.2 hours. The convergence histories for the flow and adjoint

s¢_lutions are shown in Fig. 12; the asymptotic rates are similar.

Modern Transport Configuration
For this test, transonic flow over the modern transport configura-

tion shown in Fig. 13 is considered. The grid for this case contains

1_731,262 nodes and 10,197,838 cells. The implicit line construc-

tion algorithm places 1,220,567 nodes in the line relaxation region.

The freestream Mach number for this case is 0.84, the angle of at-

tz_ck is 2.25 ° , and the Reynolds number is 3 million based on the

mean aerodynamic chord, The computations shown here are per-

fnrmed on twenty-three 2.4 GHz Pentium IV processors, and the

cost function is based on the drag coefficient.
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Figure 12. Density and turbulence residual histories for turbulent
flow over high-lift configuration.
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The convergence histories for the flow and adjoint solutions are

shown in Fig. 14. The CFL numbers for the flow equations and tur-

bulence model are linearly ramped from 10 to 200 and 1 to 20, re-

spectively, over the first 200 iterations. The CFL number used for
the turbulence model is increased to 200 after the first 1000 itera-

tions. As shown in Fig. 14, the asymptotic rates for both computa-

tions are similar. For this example, the flow solution requires 7.4

GB of memory and 41.8 hours of wallclock time; the adjoint solu-

tion requires 15.0 GB of storage and 32 wallclock hours.

Summary and Future Work

An adjoint solution algorithm that preserves discrete duality for

turbulent flows on unstructured grids has been developed and im-
plemented. The scheme is based on a backward-Euler discretization

of the Reynolds-averaged Navier-Stokes equations with a tightly

coupled one-equation turbulence model, where the linear problem

at each time step is solved with a line-implicit relaxation in the

boundary layer and a point-implicit technique through the remain-
der of the domain,

Results for several cases show that the exact dual scheme

achieves asymptotic convergence behavior equivalent to that of the

flow problem. By storing the viscous and turbulent contributions to

the adjoint residual, the memory required for the algorithm is ap-

proximately twice that of the flow solution, but with execution

times roughly 25-50% less for an equivalent number of iterations.

Efforts are currently underway to develop a multigrid implemen-

tation for improved convergence rates and to extend the discretiza-

tion to include mixed-element grids. Real gas physical models from

existing hypersonic structured-grid solvers are also being added,
with the long-term goal of achieving a self-adaptive analysis and

design capability valid across the speed range. _
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Appendix: Derivation of Exact Dual Outer Iteration

In this appendix, the expression given by Eq. 15 is manipulated

to give the exact dual iterative scheme as shown in Eq. 17. The der-
ivation shown here is identical to that of Ref. 18.

Using the discrete form of integration by parts, namely

! N-I N-I

1 2 --- Dlml_ I0 _ Turbuloneo lOS y. an+l( bn+ -bn) = aUbX-a°b°- Y, ( an+l -an) bn

,=0_" ._"0 , (25)--- D.,matyAnio_ I =

0 .... lO" Eq. 15 can be expanded as
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Figure 14, Density and turbulence residual histories for turbulent
flow over modem transport configuration.



- (27)

N I , , ,;

n - 0 _

By applying the condition t N = O)f/_Q*) r and the variable sub-

stitution shown in Eq. 16, the exact dual iteration takes the form of

Eq. 17 through the elimination of the terms involving OQ*/3D.
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